Memory Management
Memory management in C is viewed by some to be quite tricky. One needs to work with pointers that can point anywhere in memory, and if misused, cause a program to misbehave, or worse.The basic functions to allocate and deallocate memory in C are malloc() and free() respectively. The malloc() function takes a size in bytes of how much to allocate, and returns a pointer to the allocated memory to be used. Upon failure, a null pointer, which can be thought of as a pointer pointing to 0 is returned. The free() function takes the pointer returned by malloc(), and deallocates the memory, or frees up the memory it was once pointing to.
To work with malloc() in simple situations, typically, code along the following lines is used:
void *p = malloc(size);
if (p)
{
... work with p ...
free(p);
}
else
{
... handle error scenario ...
}
Unfortunately many experienced programmers forget to handle the failure scenario. I've even heard some say they purposely don't, as they have no clue how to proceed, and just letting the program crash is good enough for them. If you meet someone who makes that argument, revoke their programming license. We don't need such near sighted idiots writing libraries.
In any case, even the above can lead to some misuse. After this block of code runs, what is p now pointing to?
After the above code runs, in the case that malloc() succeeded, p is now pointing to memory in middle of nowhere, and can't be used. This is known as a dangling pointer. Dangling pointers can be dangerous, as an if clause as above will think the pointer is valid, and may do something with it, or lead to the infamous use after free bug. This becomes more likely to occur as the situation becomes more complicated and there are loops involved, and how malloc() and free() interact can take multiple paths.
Pointers involved with memory management should always be pointing at 0 or at allocated memory. Anything else is just asking for trouble. Therefore, I deem any direct use of free() dangerous, as it doesn't set the pointer to 0.
So if free() is considered harmful, what should one use?
In C++, I recommend the following:
static inline void insane_free(void *&p)
{
free(p);
p = 0;
}
This insane_free() is now a drop in replacement for free(), and can be used instead. (Since C++ programs normally use new and delete/delete[] instead, I leave it as an exercise to the reader how to work with those.)
However, C doesn't support direct references. One can pass a pointer by a pointer to accomplish similar results, but that becomes clunky and is not a drop in replacement. So in C, I recommend the following:
#define insane_free(p) { free(p); p = 0; }It makes use of the preprocessor, so some may consider it messy, but it can be used wherever free() currently is. One could also name the macro free in order to automatically replace existing code, but it's best not to program that way, as you begin to rely on these semantics. This in turn means someone copying your code may think a call to free() is the normal free() and not realize something special is occurring when they copy it elsewhere without the macro.
Correct usage in simple cases is then:
If you think using a wrapper macro or function is overkill, and just always manually assigning the pointer to 0 after freeing is the way to go, consider that it's unwieldy to constantly do so, and you may forget to. If the above technique was always used, all use after free bugs would never have occurred in the first place.void *p = malloc(size);
if (p)
{
... work with p ...
insane_free(p);
}
else
{
... handle error scenario ...
}
Something else to be aware of is that there's nothing wrong with calling free(0). However, calling free() upon a pointer which is not null and not pointing to allocated memory is forbidden and will crash your program. So stick to the advice here, and you may just find memory management became significantly easier.
If all this talk of pointers is beyond you, consider acquiring Understanding and Using C Pointers.
sprintf() and asprintf()
If you do a lot of C programming, at some point, you probably have used the sprintf() function, or its safer counterpart snprintf().These two functions sprintf() and snprintf() act like printf(), but instead of printing to the standard output, they print to a fixed-length string buffer. Now a fixed-length string buffer is great and all, but what if you wanted something which automatically allocated the amount it needed?
Enter asprintf(), a function which acts like sprintf(), but is auto-allocating, and needs no buffer supplied. This function was invented ages ago by GLIBC, shortly thereafter copied to the modern BSDs, and found its way further still into all sorts of libraries, although is not yet ubiquitous.
Let's compare the prototypes of the two:
int sprintf(char *buffer, const char *format, ...);
int asprintf(char **ret, const char *format, ...);The sanest approach would have been for a function like asprintf() to have the prototype of:
char *asprintf(const char *format, ...);But its creators wanted to make it act like sprintf(), and its design can also be potentially more useful.
Instead of passing asprintf() a buffer, a pointer to a variable of type char * needs to be passed, like so:
Now how asprintf() actually works is no big secret. The C99 standard specified that snprintf() upon failure should return the amount of characters that would be needed to contain its output. Which means that conceptually something along the following lines would be all that asprintf() needs to do:char *buffer;
asprintf(&buffer, ...whatever...);
Of course though, the above taken verbatim would be incorrect, because it mistakenly assumes that nothing can go wrong, such as the malloc() or snprintf() failing.char *buffer = malloc(snprintf(0, 0, format, data...)+1);
sprintf(buffer, format, data...);
First let's better understand what the *printf() functions return. Upon success, they return the amount of characters written to the string (which does not include the trailing null byte). Or in other words, the return value is equivalent to calling strlen() on the data being output, which can save you needing to use a strlen() call with sprintf() or similar functions for certain scenarios. Upon failure, for whatever reason, the return is -1. Of course there's the above mentioned exception to this with snprintf(), where the amount of characters needed to contain the output would be returned instead. If during the output, the size overflows (exceeds INT_MAX), many implementations will return a large negative value (failure with snprintf(), or success with all the functions).
Like the other functions, asprintf() also returns an integer of the nature described above. Which means working with asprintf() should go something like this:
However, unlike the other functions, asprintf() has a second return value, its first argument, or what the function sees as *ret. To comply with the memory management discussion above, this should also be set to 0 upon failure. Unfortunately, many popular implementations, including those in GLIBC and MinGW fail to do so.char *buffer;
if (asprintf(&buffer, ...whatever...) != -1)
{
do_whatever(buffer);
insane_free(buffer);
}
Since I develop with the above systems, and I'm using asprintf() in loops with multiple paths, it becomes unwieldy to need to pass around the buffer and the returned int, so I'd of course want saner semantics which don't leave dangling pointers in my program.
In order to correct such mistakes, I would need to take code from elsewhere, or whip up my own function. Now I find developing functions such as these to be relatively simple, but even so, I always go to check other implementations to see if there's any important points I'm missing before I go implement one. Maybe, I'll even find one which meets my standards with a decent license which I can just copy verbatim.
In researching this, to my shock and horror, I came across implementations which properly ensure that *ret is set to 0 upon failure, but the returned int may be undefined in certain cases. That some of the most popular implementations get one half wrong, and that some of the less popular get the other half wrong is just downright terrifying. This means that there isn't any necessarily portable way to check for failure with the different implementations. I certainly was not expecting that, but with the amount of horrible code out there, I guess I really shouldn't be surprised anymore.
Also in the course of research, besides finding many implementations taking a non-portable approach, many have problems in all sorts of edge cases. Such as mishandling overflow, or not realizing that two successive calls to a *printf() function with the same data may not necessarily yield the same results. Some try to calculate the length needed with some extra logic and only call sprintf() once, but this logic may not be portable, or always needs updating as new types are added to the format string as standards progress, or the C library decided to offer new features. Some of the mistakes I found seem to be due to expecting a certain implementation of underlying functions, and then later the underlying functions were altered, or the code was copied verbatim to another library, without noting the underlying functions acted differently.
So, once again, I'm finding myself needing to supply the world with more usable implementations.
Let's dive into how to implement asprinf().
Every one of these kind of functions actually has two variants, the regular which takes an unlimited amount of arguments, and the v variants which take a va_list (defined in stdarg.h) after the format argument instead. These va_lists are what ... gets turned into after use, and in fact, every non-v *printf() function is actually wrapped to a counterpart v*printf() function. This makes implementing asprintf() itself quite straight forward:
To fix the aforementioned return problems, one could also easily throw in here a check upon the correct return variable used in the underlying vasprintf() implementation and use it to set the other. However, that's not a very portable fix, and the underlying implementation of vasprintf() can have other issues as described above.
As long as you have a proper C99 implementation of stdarg.h and vsnprintf(), you should be good to go. However, some systems may have vsnprintf() but not va_copy(). The va_copy() macro is needed because a va_list may not just be a simple object, but have handles to elsewhere, and a deep copy is needed. Since vsnprintf() being passed the original va_list may modify its contents, a copy is needed because the function is called twice.
Microsoft Visual C++ (MSVC, or Microsoft Vs. C++ as I like to think of it) up until the latest versions has utterly lacked va_copy(). This and several other systems that lack it though usually have simple va_lists that can be shallow copied. To gain compatibility with them, simply employ:
#ifndef va_copy
#define va_copy(dest, src) dest = src
#endif
Be warned though that if your system lacks va_copy(), and a deep copy is required, using the above is a recipe for disaster.
Once we're dealing with systems where shallow copy works though, the following works just as well, as vsnprintf() will be copying the va_list it receives and won't be modifying other data.
Before we go further, there's two points I'd like to make.
- Some implementations of vsnprintf() are wrong, and always return -1 upon failure, not the size that would've been needed. On such systems, another approach will need to be taken to calculate the length required, and the implementations here of vasprintf() (and by extension asprintf()) will just always return -1 and *ret (or *strp) will be 0.
- The code if ((r < 0) || (r > size)) could instead be if (r != size), more on that later.
Now on Windows, vsnprintf() always returns -1 upon failure, in violation of the C99 standard. However, in violation of Microsoft's own specifications, and undocumented, I found that vsnprintf() with the first two parameters being passed 0 as in the above code actually works correctly. It's only when you're passing data there that the Windows implementation violates the spec. But in any case, relying on undocumented behavior is never a good idea.
On certain versions of MinGW, if __USE_MINGW_ANSI_STDIO is defined before stdio.h is included, it'll cause the broken Windows *printf() functions to be replaced with C99 standards compliant ones.
In any case though, Windows actually provides a different function to retrieve the needed length, _vscprintf(). A simple implementation using it would be:
This however makes the mistake of assuming that vsnprintf() is implemented incorrectly as it currently is with MSVC. Meaning this will break if Microsoft ever fixes the function, or you're using MinGW with __USE_MINGW_ANSI_STDIO. So better to use:
Lastly, let me return to that second point from earlier. The vsnprintf() function call the second time may fail because the system ran out of memory to perform its activities once the call to malloc() succeeds, or something else happens on the system to cause it to fail. But also, in a multi-threaded program, the various arguments being passed could have their data change between the two calls.
Now if you're calling functions while another thread is modifying the same variables you're passing to said function, you're just asking for trouble. Personally, I think that all the final check should do is ensure that r is equal to size, and if not, something went wrong, free the data (with insane_free() of course), and set r to -1. However, any value between 0 and size (inclusive), even when not equal to size means the call succeeded for some definition of success, which the above implementations all allow for (except where not possible Microsoft). Based on this idea, several of the implementations I looked at constantly loop while vsnprintf() continues to indicate that the buffer needs to be larger. Therefore, I'll provide such an implementation as well:
Like the first implementation, if all you lacked was va_copy(), and shallow copy is fine, it's easy to get this to work on your platform as described above. But if vsnprintf() isn't implemented correctly (hello MSVC), this will always fail.
All the code here including the appropriate headers, along with notes and usage examples are all packed up and ready to use on my asprintf() implementation website. Between everything offered, you should hopefully find something that works well for you, and is better than what your platform provides, or alternative junk out there.
As always, I'm only human, so if you found any bugs, please inform me.